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Abstract. Bound states of two rotons are sought by explicit numerical integration of a 
Schrodinger equation, based on an interaction hamiltonian of dipole4ipole form and self- 
hamiltonians derived from the modified Landau dispersion relationship. I t  is found that 
the most tightly bound state of zero total momentum belongs to the angular momentum 
quantum number I = 3. The binding energy is about 0.43 K, and the root mean square 
separation of the rotons is almost 12 A. Bound states for other values of I are located. In 
particular, the greatest binding energy of the I = 2 bound state is about 0.29 K,  in satisfactory 
agreement with the experimentally determined value of (0.37+0.10) K with a root mean 
square roton separation of just over 14 A. The largest effective masses of these I = 2 and 
I = 3 states are respectively about 2.1 and 2.8 times the mass of the helium atom. 

1. Introduction 

Raman scattering of optical photons by liquid helium has suggested the existence of a 
loosely bound state of two rotons (Greytak and Yau 1969, Greytak et al 1970). De- 
polarization data indicate that the angular momentum l = 2 is preferred, although other 
values may be present as well (Greytak and Yau 1969). We find below bound states of 
the Schrodinger-like equation following from the roton dispersion curve and the hydro- 
dynamic interaction between two widely separated rotons. We solve the equation for 
zero centre of mass momentum P,  and then treat non-zero P by first-order perturbation 
theory. We find a series of excitation curves, measurable in principle via neutron 
scattering, of the form 

E ( P )  = 2A- E ,  + P2/(2M*). (1) 

For each energy eigenvalue El there are I +  1 effective masses, M*,  labelled by the internal 
quantum number m = ILJ. In (l), A denotes the roton energy gap. 

The idea of two distinct rotons interacting via a potential can be sensible only if we 
restrict ourselves to He 11 excitations which are localized wave packets with momentum 
distribution peaked around some value near the roton minimum. The flow at a point 
r l ,  situated at a large distance r from a roton of momentum p z  at r z ,  is (Feynman and 
Cohen 1956, Feenberg 1969) 
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where p is the fluid density. The energy of a roton of momentump, situated at rl in this 
flow is 

El = E(Pl)+Pl Vs(r). (3) 

H(pl,P,?r) = 4 P 1 ) + 4 P , ) + P 1 -  Vs(r), (4) 

The hamiltonian of the system is then 

which, despite its appearance, is symmetric in the variables of the two rotons. Although 
this interaction is semi-classical and reasonable only for rather large separations, one 
notes that experiments suggest the average separation is large : if p denotes the effective 
mass of the roton, and E ,  is the experimentally determined binding energy of 0.37 K, 
then f ~ / ( p E , ) ” ~  is about 14.3 A. Moreover, the angular momentum barrier present for 
1 2 2 may be expected to reduce sensitivity to the unknown short-distance behaviour of 
the potential. 

The conventional (Landau) form for .(p) is 

4P) = A + (lPl - Po)2/(2P), ( 5 )  

where p o  is the momentum corresponding to the roton minimum. It should be recalled, 
however, that a Schrodinger equation is to be formed from the hamiltonian (4), and for 
this purpose the form (5) is both ambiguous and unsuitable. Again remembering that 
the binding energy is very small, we can expect contributions only from (1pI -p0)’ << p i .  
This suggests that we should replace the spectrum ( 5 )  by the more convenient modified 
Landau form apparently first introduced by Pitaevski, and used for example by Iguichi 
(1971) : 

.(A = A + (P2 - P ; m P P ; ) .  ( 6 )  
The location and curvature of this dispersion curve coincide with those of equation (5). 
Indeed, equation (6 )  is a distinctly better fit to the data? than is the conventional ex- 
pression (see figure 1). Thus, after absorbing 2A into the zero of energy, we have for our 
hamiltonian 

If the total momentum p1 + p 2  is zero, the hamiltonian (7) gives stable bound orbits in 
classical mechanics, but with a binding energy more than an order of magnitude too 
large. We find that a quantum-mechanical bound state exists for 1 = 2, which has 
approximately the experimental energy. An 1 = 3 bound state also exists having a slightly 
greater binding energy, as well as numerous other weakly bound states. We wish to 
emphasize that the present approach, unlike that of Yau and Stephen (1971), is not 
variational but depends on a direct integration of the Schrodinger equation. Also our 
results do not rely on the arbitrary introduction of a small r cut-off, R , ,  specially selected 
to agree with the experimental results best. 

2. Formulation and solution of the eigenvalue problem 

The relative coordinate r = r1 - r2  is conjugate to the relative momentum operator 
p = i(pl - p 2 )  satisfying [ r I , p m ]  = ihd,,. For small total momentum P = p1 +p2  we 

t A convenient and thorough analysis of the data has recently been given by Brooks and Donnelly (1974). 
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Figure 1. A comparison of the dispersion relationship with two approximations. The full 
curve gives the actual spectrum of quasi-particles, as given by a six-term series fitting of 
observational data at T = 1.1 K and the vapour pressure (Brooks and Donnelly 1974). The 
parameters for the roton minimum are A = 8.5458 K, p o / h  = 1,9128 A - ’ .  and 
p = 0,15967 mHc. The dotted curve shows the Landau spectrum and the broken curve shows 
the modified Landau spectrum implied by these parameters. 

can, with O(P4) error, write H = Ho + H, , where 
H - 1  2 

0 - AP - - 5jPiPj7 

H ,  = %P.p)2+3P2(p2-  1)+ KjPiPj, 

and summation over repeated indices is understood. We have used dimensionless units 
based on i = ( 2 n p / , ~ ) - ” ~  for length, p o  for momentum, and p ; / p  for energy. Denoting 
the dimensionless parameter h/(Ap0)( = 0.499) by a, and replacing the dimensionless p 
by - iaV,  the Schrodinger equation (H, -E)” = 0 for the states of zero total momentum 
becomes 

(1 1) 
a 2 y  

ar2 
a4V4Y+2(l-r-3)a2V2Y+6a2r-3- = (4E-1)”. 

The hermiticity condition (0, HoY) = (Y, H,@) requires that 

should vanish for r -, 0 and for r -, 00. These conditions transform (11) into an eigen- 
value problem, as we shall see. 

Equation (11) admits separable solutions of the form Y = R(r)E;,(O, q5), where E;, 
is a spherical harmonic of order 1. We will examine only the cases 12 2. It can be 
shown that as r + 00, R approaches a linear combination of r - l  exp(q,r), where aqi 
takes the four values 
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Condition (12) requires that only the two values of q with negative real part appear in 
the eigensolution. This places essentially two conditions on the solutions of the fourth- 
order equation (1 1). 

Analysis of the solutions of( 1 1 )for r -, 0 reveals two types of behaviour. The solutions 
which we will call ‘regular’ are characterized by a small r asymptotic behaviour of the 
form Y - r exp( +is In r) ,  where s’ = $1(1+ 1)- 1. The ‘irregular’ solutions are 
asymptotically given by Y - rs14 exp[ f4 i / (~~r ’ ’~ ) ] .  Condition (12) permits only regular 
solutions in an eigenfunction. This provides two further conditions on the fourth-order 
equation (1 l), thus completing the definition of the eigenvalue problem. We will call 
this the ‘coreless model’, to distinguish it from the next two possibilities. 

The dipole interaction is quite unrealistic for small r,  and even the idea of two 
distinct rotons is questionable. One might place a potential barrier V = V, at r = R, 
to represent a hard-core repulsion. The requirement of continuity of R and its first three 
derivatives at r = R, becomes, as V, + 00, the condition that R and dRldr vanish at 
r = R,. These two demands, together with the two on R at infinity, also pose a well 
defined eigenvalue problem which we may call the ‘hard-core model’. Another extreme 
possibility would be to  set V = 0 for r < R,, and to exclude the two spherical Bessel 
functions (of the four which satisfy the differential equation for r < R,) which diverge 
at the origin. This defines a ‘soft-core model’. 

One of the difficulties in solving equation (11) is a consequence of the small size of 
the eigenvalue E l .  This implies that the real part of q is small in modulus and that the 
numerical integrations must be carried to large r before the solution can be properly 
tested for the absence of exponentially growing components. To overcome this difficulty, 
the terms in the asymptotic expansion of R for r -, 00 were obtained from equation (1 1) 
by a five-term recurrence relation. The Runge-Kutta integration could then be ter- 
minated at any I (= r l ,  say), and, with the error implied by the asymptotic expansion, 
extrapolated to infinite r. The integration of the coreless model also fails as Y approaches 
zero. This difficulty was overcome in like fashion. An asymptotic expansion of the 
regular solution was generated by use of a six-term relation and was matched to the 
Runge-Kutta integration at r = r 2 ,  say. The accuracy of the results was tested by 
comparing answers for different choices of r1 and r 2 .  

Once the eigenvalues and eigenfunctions had been obtained, it was straightforward 
to treat the effect of centre of mass motion in first-order perturbation theory. With the 
z axis defined by the direction of P, we have 

s Y*HIY dV 

s (VYI’ dV- / 1YI’ dV), 
(81’ + 81 - 5 -4m’) 

(21- 1)(21+ 3) + o2 

where m is the azimuthal quantum number and M* is the effective mass of the bound 
state in units of the roton mass p N 0.16 mHe where mHe is the mass of the helium atom. 
We note that the excitation curves given by expression (1) cross, producing mixing of 
states of different 1 and repulsion of levels. The spectrum obtained here may be, therefore, 
valid only for very small 14 and not be a good approximation to that observed in actual 
neutron scattering. 
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3. Results and discussion 

We consider first the coreless model. The binding energy E l  of the most tightly bound 
state (largest E , )  is given in table 1 for 1 = 2, 3, 4 and 5. The upper half of the table 
summarizes our results in the dimensionless units defined below equation (10) above ; 

Table 1. Binding energy, mean square momentum and effective masses. 

1 2 3 4 5 

E ,  x 103 1,0520 1,5585 0.3536 

J<r’> 13.58 11.03 21.61 
J < P 2 >  1,00904 1,00504 1.00118 

M*(m = 0) 
M * ( m  = 1) 
M*(m = 2) 
M*(m = 3) 
M*(m = 4) 
M*(m = 5) 

3,679 
4.484 

13.04 

3.827 
4,190 
5.852 

17.29 

3.927 
4.1 39 
4.940 
7.288 

21 4 0  

0.290 
1.927 

14.26 

0.430 
1.920 

11.59 

0.0976 
1,912 

22.70 

M*/m,,(m = 0) 0.5887 0,6123 0,6284 
M*/mHe(m = 1) 0.7175 0.6703 0,6623 
M*jmHe(m = 2) 2.086 0,9364 0.7904 
M*/m,,(m = 3) - 2.766 1.166 
M*/mH,(m = 4) - - 3,488 
M*/mHc(m = 5) - - - 

0.1086 
1.00005 

100.1 

3.965 
4,104 
4.587 
5,706 
8,664 

25.98 

0.0300 
1,910 

105.1 

0.6345 
0,6567 
0.7340 
0.9 130 
1,386 
4.157 

the lower half gives the same results in dimensional form using p o / A  = 1.91 A-‘ ,  
,U = 0.16 mHe and p = 0.146 g ~ m - ~ .  It should be noticed that the lowest energy state 
appears to belong not to 1 = 2 but 1 = 3. This unexpected result led us to expend 
considerable computing effort searching for a more tightly bound 1 = 2 state, but 
without success. It suggests that the 1 = 3 bound states will be more highly populated 
than the 1 = 2 states observed in Raman scattering experiments. The binding energy for 
1 = 2 is 0.29 K, in satisfactory agreement with the experimentally determined value of 
(0.37 0.10) K. We also calculated ( p ’ )  and ( r ’ ) .  We found for 1 = 2 that J ( p 2 ) / p o  = 
1.005, clearly within the region of validity of the modified Landau spectrum (6). We 
found the 1 = 2 root mean square radius ( r 2 ) l / ’  to be 14.3 A, supporting the physical 
picture described in the introduction. It may be observed that the largest effective 
mass 2.1 mHe of the 1 = 2 state is somewhat larger than the estimate of about ;mHe 
made by Donnelly (1972); the classical theory gave 1.6mH, but for a greater angular 
momentum than implied by 1 = 2 (Roberts and Donnelly 1974). 

The results of the computations are also shown in figures 2-7. The wavefunction R 
is given for I = 2 and 3 in figures 2 and 3. (The abscissa is dimensionless, the normaliza- 
tion of the ordinate is arbitrary.) In figures 4 and 5 ,  the integrated probability 9’ is 
shown for 1 = 2 and 1 = 3, where 
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Figure 2. The wavefunction R for I = 2 as a function of dimensionless radius r in the case of 
pure dipoledipole interaction. 

Figure 3. The wavefunction R for I = 3 as a function of dimensionless radius r in the case of 
pure dipoledipole interaction. 

u(r) is the interior of the sphere of radius r ,  and Y is normalized so that LP(o0) = 1. In 
figure 6 the dispersion curves (1) are given for the results tabulated. In figure 7 the 
results for 1 = 2 alone are shown on a diagram which also gives neutron data near 
P = 0 (Cowley and Woods 1971) and a model dispersion curve (Brooks and Donnelly 
1974). 

Next, we consider the hard-core model. The dimensionless binding energy El is 
shown as a function of the dimensionless core radius R ,  in figure 8 for 1 = 2,3  and 4. 
No results were obtained for small values of R,, because the presence of the irregular 
components of solution (necessary to satisfy the boundary conditions at r = R,) can 
lead to difficulties in the Runge--Kutta integrations for small r. It is nevertheless clear 
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5 I O  15 20 

r 

Figure 4. The integrated probability 9 ( r )  for the wavefunction shown in figure 2 ;  B is 
defined in equation (15), and r is dimensionless. 

r 

Figure 5. The integrated probability 9 ( r )  for the wavefunction shown in figure 3 ;  B is 
defined in equation (15), and r is dimensionless. 

that, for I = 3 (and probably for 1 = 4 also), the eigenvalue is continuous as R ,  -+ 0 
with the E 3  (and E 4 )  of the coreless model, results for which are shown on the E axis. In 
sharp contrast, E2 displays a number of 'spikes' resembling asymptotes. 

From the mathematical standpoint, the sensitivity of E 2  to R ,  shown in figure 8 may 
be partially understood by observing that, when R, and I ( >  R,) are sufficiently small, 

R - AIrsin[iIn($)] + B l r 5 ~ 4 c o s [ ~ ( ~ - & ) ] .  

where AI and Bl are constants whose ratio is determined by conditions at r = 00. I t  
appears that, for any 0 and sufficiently large 1, the ratio &/AI + 0 as R, + 0, and the 
solution (16) for the hard core is continuous with that of the coreless model (which 
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Figure 6. The computed dispersion curves (1)  for the bound states 1 = 2, 3, 4 and 5 
(0 6 m 6 r )  on the assumption of a pure dipole-dipole interaction. 
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0 0 2  0 4  0 6  08 IO I 2  14 16 18 2 0  
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Figure 7. The computed dispersion curve (1) for the the bounds states I = 2 (m = 0. 1.2) on 
the assumption of a pure dipole-dipole interaction Also shown are a model dispersion curve 
for unbound excitations, and neutron data 

contains no irregular component). It also appears that, for any I and sufficiently small 
a, the ratio BJA,  for the maximally bound state(s) is O(1) as R,  -+ 0, leading to the 
irregular behaviour evident for I = 2 in figure 8. Further support for this view is shown 
in table 2. It may be seen that, if the dipole interaction is sufficiently weakened (larger a), 
E 2  is a smooth function of R , .  When it is strengthened (small a), even E ,  is no longer a 
smooth function of R , .  It is doubtful whether the soft-core solutions are continuous with 
the bumpy hard-core solutions but it is possible that they are continuous with a less 
tightly bound, but smooth, branch of the hard-core solutions : we obtained no numerical 
evidence of this. 
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Figure 8. The binding energy E as a function of hard-core radius R ,  for I = 2 , 3  and 4. The 
open circles give the computed values of the most tightly bound states for I = 2, the crosses 
for I = 3, and the plus signs for I = 4. 

Table 2. Some binding energies of the hard core model. 

R, 0 0.10 0.16 0.20 
1 0 5 ~ ~  5.803 5,790 5.777 5,772 

U = 0.2 

R ,  0 0.145 0.15 0,165 0.1 7 0.1 75 
1 0 5 ~ ~  48.21 8.415 2,076 36.79 16.79 6.867 

R ,  in units of I ,  and E ,  in units of p i / p .  

From the physical standpoint, the sensitivity of E ,  to R ,  shown in figure 8 is 
reminiscent of the falling of a particle into a sufficiently strong centre of attraction 
(Landau and Lifshitz 1958,G 25), and it is perhaps significant that the classical theory of 
roton binding (Roberts and Donnelly 1973, 1974) predicts that falling in must occur for all 
sufficiently small angular momenta, more precisely whenever 

~ [ l ( l +  1)]1’2 < 1.6865.. . . (17) 

Moreover, the value of 0.499 used for cr in preparing figure 8 lies between the two critical 
values, 0.689 and 0.487, given by (17) for 1 = 2 and 3 respectively. On the other hand, 
the values of (r used in table 2 lie outside this interval. 

I t  appears from this discussion that results obtained for fixed (r and sufficiently large I 
will be insensitive to the short-range deviations from the dipole4ipole interaction which 
probably arise between rotons. We may also anticipate that, if the short-range potential 
is sufficiently smooth compared with the (varying) oscillation period of the irregular 
solutions, the sensitivity of E ,  to  R ,  for fixed I and sufficiently small cr will be removed. 
In the absence of any firm knowledge about the interaction potential at short distances, 
we have, however, not deemed it profitable to continue the calculations by adding to the 
dipole law in an ad hoc way. 
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Although we did not examine the soft-core model in detail, its behaviour appears to 
resemble that of the hard-core model. We note that Yau and Stephen (1971), after 
performing variationally a calculation somewhat similar to ours, reported that the binding 
energy E ,  is sensitive to R , ,  with experiment best fitted when R ,  1: 5 A. 

We feel that our theoretical results, taken in conjunction with the experimental data, 
provide convincing evidence for the existence of bound states, and that these states are 
likely to provide a good basis for further theoretical and experimental elucidation of the 
He II excitation spectrum. We also feel that experimentalists may wish to be made aware 
of the theoretical possibility that the optically observed 1 = 2 states may not be sta- 
tistically the most numerous. 
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